Control of multiple bandgap shifts in InGaAs-AlInGaAs multiple-quantum-well material using different thicknesses of PECVD SiO2 protection layers

Abstract
A useful development of the sputtered SiO/sub 2/ intermixing technique is reported, which uses a single stage of sputtered SiO/sub 2/ deposition and annealing to achieve precise tuning of the bandgap energy in the InGaAs-AlInGaAs material system. The blue shift of photoluminescence spectra can be varied in the range of 0-160 nm. Bandgap-tuned lasers were integrated on a single chip using this technique to assess the post-processed material characteristics and demonstrate its application in optoelectronic integration.