Conversion of Si to epitaxial SiC by reaction with C2H2

Abstract
The growth of β‐SiC films on Si by reaction of a Si single crystal with C2H2 has been studied for the conditions 10−7PC2H2≤5×10−4 Torr, 800≤T≤1100°C, in both high‐ and ultrahigh‐vacuum chambers. At C2H2 pressures below approximately 10−5 Torr, linear growth kinetics were observed over the temperature range investigated and the reaction probability was determined as 0.02–0.03. In this pressure range growth occurs by the diffusion of Si through porous defects incorporated in the growing film. We have studied in detail the structure of defected films formed under various growth conditions by scanning electron microscopy, scanning transmission electron microscopy, and transmission electron microscopy. We conclude that the occurrence of defects is intrinsic to the mechanism of film growth. The predominant defect type consists of a shallow (∼ 2000 Å) pit in the Si substrate, over which the growing SiC assumes a porous polycrystalline morphology. The number and areal densities of these defects are proportional to the C2H2 partial pressure and the SiC film thickness, respectively. The defects act as sources of Si for reaction, and film growth occurs via diffusion of Si from the substrate through the porous overgrowth to the epitaxial SiC/vacuum interface, where reaction occurs. For C2H2 pressures exceeding approximately 10−5 Torr the porous defects are sealed off at an early stage in the growth and further reaction is virtually arrested due to the extremely small bulk and/or grain boundary diffusivity for Si in SiC over the experimental temperature range. No significant effect on growth rate due to the type of vacuum system used was found.