10-Gb/s 850-nm CMOS OEIC Receiver With a Silicon Avalanche Photodetector

Abstract
We present a 10-Gb/s optoelectronic integrated circuit (OEIC) receiver fabricated with standard 0.13-μm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. The OEIC receiver consists of a CMOS-compatible avalanche photodetector (CMOS-APD), a transimpedance amplifier (TIA), an offset cancellation network, a variable equalizer (EQ), a limiting amplifier (LA), and an output buffer. The CMOS-APD provides high responsivity as well as large photodetection bandwidth. The TIA is composed of two-stage differential amplifiers with high feedback resistance of 4 kΩ. The EQ compensates high-frequency loss by controlling the boosting gain with a capacitor array. The LA consists of five-stage gain cells with active feedback and negative capacitance to achieve broadband performance. With the OEIC receiver, we successfully demonstrate transmission of 10-Gb/s optical data at 850 nm with a bit error rate of 10-12 at the incident optical power of -4 dBm. The OEIC receiver has the core chip area of about 0.26 mm2 and consumes about 66.8 mW.