Abstract
A continuous roll-to-roll nanoimprint lithography (R2RNIL) technique can provide a solution for high-speed large-area nanoscale patterning with greatly improved throughput; furthermore, it can overcome the challenges faced by conventional NIL in maintaining pressure uniformity and successful demolding in large-area imprinting. In this work, we demonstrate large-area (4 in. wide) continuous imprinting of nanogratings by using a newly developed apparatus capable of roll-to-roll imprinting (R2RNIL) on flexible web and roll-to-plate imprinting (R2PNIL) on rigid substrate. The 300 nm line width grating patterns are continuously transferred on either glass substrate (roll-to-plate mode) or flexible plastic substrate (roll-to-roll mode) with greatly enhanced throughput. In addition, the film thickness after the imprinting process, which is critical in optical applications, as a function of several imprinting parameters such as roller pressure and speed, is thoroughly investigated, and an analytical model has been developed to predict the residual layer thickness in dynamic R2RNIL process.