SP: an advanced surface-potential-based compact MOSFET model

Abstract
This work describes an advanced physics-based compact MOSFET model (SP). Both the quasistatic and nonquasi-static versions of SP are surface-potential-based. The model is symmetric, includes the accumulation region, small-geometry effects, and has a consistent current and charge formulation. The surface potential is computed analytically and there are no iterative loops anywhere in the model. Availability of the surface potential in the source-drain overlap regions enables a physics-based formulation of the extrinsic model (e.g., gate tunneling current) and allows for a noise model free of discontinuities or unphysical interpolation schemes. Simulation results are used to illustrate the interplay between the model structure and circuit design.