50-nm gate Schottky source/drain p-MOSFETs with a SiGe channel

Abstract
We propose new SiGe channel p-MOSFETs with germano-silicide Schottky source/drains (S/Ds). The Schottky barrier-height (SBH) for SiGe is expected to be low enough to improve the injection of carriers into the SiGe channel and, as a result, current drivability is also expected to improve. In this work, we demonstrate the proposed Schottky S/D p-MOSFETs down to a 50-nm gate-length. The drain current and transconductance are -339 /spl mu/A//spl mu/m and 285 /spl mu/S//spl mu/m at V/sub GS/=V/sub DS/=-1.5 V, respectively. By increasing the Ge content in the SiGe channel from 30% to 35%, the drive current. and transconductance can be improved up to 23% and 18%, respectively. This is partly due to the lower barrier-height for strained Si/sub 0.65/Ge/sub 0.35/ channel than those for strained Si/sub 0.7/Ge/sub 0.3/ channel device and partly due to the lower effective mass of the holes.

This publication has 16 references indexed in Scilit: